图书简介
The book gathers articles that were exposed during the seventh edition of the Workshop “Data Analysis in Astronomy”. It illustrates a current trend to search for common expressions or models transcending usual disciplines, possibly associated with some lack in the Mathematics required to model complex systems. In that, data analysis would be at the epicentre and a key facilitator of some current integrative phase of Science.
It is all devoted to the question of “representation in Science”, whence its name, IMAGe IN AcTION, and main thrusts
• Part A: Information: data organization and communication,
• Part B: System: structure and behaviour,
• Part C: Data — System representation.
Such a classification makes concepts as “complexity” or “dynamics” appear like transverse notions: a measure among others or a dimensional feature among others.
Part A broadly discusses a dialogue between experiments and information, be information extracted-from or brought-to experiments. The concept is fundamental in statistics and tailors to the emergence of collective behaviours. Communication then asks for uncertainty considerations — noise, indeterminacy or approximation — and its wider impact on the couple perception-action. Clustering being all about uncertainty handling, data set representation appears not to be the only solution: Introducing hierarchies with adapted metrics, a priori pre-improving the data resolution are other methods in need of evaluation. The technology together with increasing semantics enables to involve synthetic data as simulation results for the multiplication of sources.
Part B plays with another couple important for complex systems: state vs. transition. State-first descriptions would characterize physics, while transition-first would fit biology. That could stem from life producing dynamical systems in essence. Uncertainty joining causality here, geometry can bring answers: stable patterns in the state space involve constraints from some dynamics consistency. Stable patterns of activity characterize biological systems too. In the living world, the complexity — i.e. a global measure on both states and transitions — increases with consciousness: this might be a principle of evolution. Beside geometry or measures, operators and topology have supporters for reporting on dynamical systems. Eventually targeting universality, the category theory of topological thermodynamics is proposed as a foundation of dynamical system understanding.
Part C details examples of actual data-system relations in regards to explicit applications and experiments. It shows how pure computer display and animation techniques link models and representations to “reality” in some “concrete” virtual, manner. Such techniques are inspired from artificial life, with no connection to physical, biological or physiological phenomena! The Virtual Observatory is the second illustration of the evidence that simulation helps Science not only in giving access to more flexible parameter variability, but also due to the associated data and method storing-capabilities. It fosters interoperability, statistics on bulky corpuses, efficient data mining possibly through the web etc. in short a reuse of resources in general, including novel ideas and competencies. Other examples deal more classically with inverse modelling and reconstruction, involving Bayesian techniques or chaos but also fractal and symmetry.
Information: Data Organization and Communication: Statistical Information: A Bayesian Perspective (R B Stern & C A de B Pereira); The Role of Noise in Brain Function (S Roy & R Llin’as) ; Fast Redshift Clustering with the Baire (Ultra) Metric (F Murtagh & P Contreras); Blind Processing in Astrophysical Data Analysis (E Salerno & L Bedini); System: Structure and Behaviour: Looking the World from Inside: Intrinsic Geometry of Complex Systems (L Boi); A Local Explication of Causation (G Boniolo, R Faraldo & A Saggion); Self-Assembly, Modularity and Physical Complexity (S E Ahnert); The Category of Topological Thermodynamics (R M Kiehn); Data/System Representation: Galactic Phase Spaces (D Chakrabarty); From Data to Images: A Shape Based Approach for Fluorescence Tomography (O Dorn & K E Prieto); A Multiscale Autocorrelation Function for Anisotropy Studies (M Scuderi, M De Domenico, A Insolia & H Lyberis); Bayesian Semi-Parametric Curve-Fitting and Clustering in SDSS Data (S Mukkhopadhyay, S Roy & S Bhattacharya); and other papers.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐