Nonlinear Time Series:Nonparametric and Parametric Methods(Springer Series in Statistics)

数理统计学

原   价:
3110.00
售   价:
1555.00
优惠
平台大促 低至8折优惠
发货周期:外国库房发货,通常付款后3-5周到货
作      者
Fan
出  版 社
出版时间
2005年08月04日
装      帧
平装
ISBN
9780387261423
复制
页      码
552
开      本
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 49 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
Amongmanyexcitingdevelopmentsinstatisticsoverthelasttwodecades, nonlineartimeseriesanddata-analyticnonparametricmethodshavegreatly advanced along seemingly unrelated paths. In spite of the fact that the - plication of nonparametric techniques in time series can be traced back to the 1940s at least, there still exists healthy and justi?ed skepticism about the capability of nonparametric methods in time series analysis. As - thusiastic explorers of the modern nonparametric toolkit, we feel obliged to assemble together in one place the newly developed relevant techniques. Theaimofthisbookistoadvocatethosemodernnonparametrictechniques that have proven useful for analyzing real time series data, and to provoke further research in both methodology and theory for nonparametric time series analysis. Modern computers and the information age bring us opportunities with challenges. Technological inventions have led to the explosion in data c- lection (e.g., daily grocery sales, stock market trading, microarray data). The Internet makes big data warehouses readily accessible. Although cl- sic parametric models, which postulate global structures for underlying systems, are still very useful, large data sets prompt the search for more re?nedstructures,whichleadstobetterunderstandingandapproximations of the real world. Beyond postulated parametric models, there are in?nite other possibilities. Nonparametric techniques provide useful exploratory tools for this venture, including the suggestion of new parametric models and the validation of existing ones.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个