图书简介
This book constitutes the refereed proceedings of the 7th International Conference on Belief Functions, BELIEF 2022, held in Paris, France, in October 2022.The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well-understood connections to other frameworks such as probability, possibility, and imprecise probability theories. It has been applied in diverse areas such as machine learning, information fusion, and pattern recognition.The 29 full papers presented in this book were carefully selected and reviewed from 31 submissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more.
Evidential Clustering A Distributional Approach for Soft Clustering Comparison and Evaluation.- Causal transfer evidential clustering.- Jiang A variational Bayesian clustering approach to acoustic emission interpretation including soft labels.- Evidential clustering by Competitive Agglomeration.- Imperfect Labels with Belief Functions for Active Learning.- Machine Learning and Pattern Recognition An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers.- Ordinal Classification using Single-model Evidential Extreme Learning Machine.- Reliability-based imbalanced data classification with Dempster-Shafer theory.- Evidential regression by synthesizing feature selection and parameters learning.- Algorithms and Evidential Operators Distributed EK-NN classification.- On improving a group of evidential sources with different contextual corrections.- Measure of Information Content of Basic Belief Assignments.- Belief functions on On Modelling and Solving the Shortest Path Problem with Evidential Weights.- Data and Information Fusion Heterogeneous Image Fusion for Target Recognition based on Evidence Reasoning.- Cluster Decomposition of the Body of Evidence.- Evidential Trustworthiness Estimation for Cooperative Perception.- An Intelligent System for Managing Uncertain Temporal Flood events.- Statistical Inference - Graphical Models A practical strategy for valid partial prior-dependent possibilistic inference.- On Conditional Belief Functions in the Dempster-Shafer Theory.- Valid inferential models offer performance and probativeness assurances.Links with Other Uncertainty Theories A qualitative counterpart of belief functions with application to uncertainty propagation in safety cases.- The Extension of Dempster’s Combination Rule Based on Generalized Credal Sets.- A Correspondence between Credal Partitions and Fuzzy Orthopartitions.- Toward updating belief functions over Belnap–Dunn logic.- Applications Real bird dataset with imprecise and uncertain values.- Addressing ambiguity in randomized reinsurance contracts using belief functions.- Evidential filtering and spatio-temporal gradient for micro-movements analysis in the context of bedsores prevention.- Hybrid Artificial Immune Recognition System with improved belief classification process.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐