Computer Vision.- Automated On-Vehicle Road Defect Data Collection and Detection.- Vision Transformer Based Model for Describing a Set of Images as a Story.- Diverse Audio-to-Video GAN using Multiscale Image Fusion.- Zero-shot Personality Perception From Facial Images.- Multi-view based clustering of 3D LiDAR point clouds for intelligent vehicles.- Deep Learning.- FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity.- SG-Shuffle: Multi-aspect Shuffle Transformer for Scene Graph Generation.- Explainable Detection of Microplastics Using Transformer Neural Networks.- EDE-NAS: An Eclectic Differential Evolution Approach to Single-Path Neural Architecture Search.- Impact of Mathematical Norms on Convergence of Gradient Descent Algorithms for Deep Neural Networks Learning.- The Feasibility of Deep Counterfactual Regret Minimisation for Trading Card Games.- Are Graph Neural Network Explainers Robust to Graph Noises?.- Ethical/Explainable AI.- Towards Explainable AutoML Using Error Decomposition.- Does A Compromise on Fairness Exist in Using AI Models?.- Fairness Aware Swarm-based Machine Learning for Data Streams.- Explainable Network Intrusion Detection Using External Memory Models.- Genetic Algorithms.- Handling Different Preferences between Objectives for Multi-objective Feature Selection in Classification.- Genetic Algorithm with a Novel Leiden-based Mutation Operator for Community Detection.- Evolution Strategies for Sparse Reward Gridworld Environments.- Niching-Assisted Genetic Programming for Finding Multiple High-Quality Classifiers.- Evolving Effective Ensembles for Image Classification Using Multi-objective Multi-tree Genetic Programming.- Knowledge Representation and NLP.- QUARRY: A Graph Model for Queryable Association Rules.- Using Context-Free Grammar To Generate Synthetic Technical Short Texts.- Predicting Marimba Stickings Using Long Short-Term Memory Neural Networks.- Systematic Monotonicity and Consistency for Adversarial Natural Language Inference.- Understanding Document Data Sources Using Ontologies with Referring Expressions.- Tyche: A Library for Probabilistic Reasoning and Belief Modelling in Python.- Belief Revision with Dishonest Reports.- Machine Learning.- Active Learning for kNN using Instance Impact.- Multiclass Malware Classification using either Static Opcodes or Dynamic API Calls.- A Novel Approach to Time Series Complexity via Reservoir Computing.- Boosted Self–Evolving Neural Networks for Pattern Recognition.- Machine learning inspired fault detection of dynamical networks.- Medical AI.- Multiclass Classification for GvHD Prognosis Prior to Allogenic Stem Cell Transplantation.- What Leads to Arrhythmia: Active Causal Representation Learning of ECG Classification.- Automated Fish Classification Using Unprocessed Fatty Acid Chromatographic Data: A Machine Learning Approach.- Automated Radiology Report Generation using a Transformer-Template System: Improved Clinical Accuracy and an Assessment of Clinical Safety.- 3D Face Reconstruction with Mobile Phone Cameras for Rare Disease Diagnosis.- Non-linear Continuous Action Spaces for Reinforcement Learning in Type 1 Diabetes.- Cognitive impairment prediction by normal cognitive brain MRI scans using deep learning.- A Text-Independent Forced Alignment Method for Automatic Phoneme Segmentation.- Multi-componential Emotion Recognition in VR Using Physiological Signals.- Liver Disease Classification by Pruning Data Dependency Utilizing Ensemble Learning Based Feature Selection.- Medical Optimization.- Optimizing the Feature Set for Mac
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐